Thematischer Forschungsbericht
Verkehrsmanagement

VERKEHRSFORSCHUNG UND -INNOVATION KOMMUNIZIEREN

www.transport-research.info
Haftungsausschluss

Diese Veröffentlichung wurde vom Konsortium des Transport Research and Innovation Portal (TRIP) im Auftrag der Europäischen Kommission, Generaldirektion Mobilität und Verkehr (GD MOVE), erstellt. Die Broschüre wurde von Nina Nesterova (Panteia, Niederlande) und Silvia Gaggi (ISIS, Italien) verfasst. Das Projektteam dankt Professor Jacek Zak für seinen wertvollen Beitrag und Helen West für die Durchsicht des Manuskripts.

© Europäische Union, 2012
Umschlagseite: www.eltis.org (Harry Schiffer).

Nachdruck mit Quellenangabe gestattet.
Table of Contents

Vorwort .. 5

Zusammenfassung ... 7

1. Einleitung .. 9

2. Politischer Hintergrund .. 11

3. Unterthema: Verkehrsmanagement in der Stadt 16
 Hintergrund .. 16
 Forschung .. 16
 Verkehrsmanagement in der Stadt ... 17
 Steuerung der Verkehrsnachfrage ... 20

4. Unterthema: Güterverkehrsmanagement 23
 Hintergrund .. 23
 Forschung .. 23
 Technische Aspekte des Güterverkehrsmanagements und der Logistik .. 24
 Strategisches Gütermanagement und strategische Logistik 26

5. Unterthema: Straßenverkehrsmanagement 29
 Hintergrund .. 29
 Forschung .. 29
 Anwendungen des Verkehrsmanagements, einschließlich
 Sicherheit .. 30
Strategien des Verkehrs- und Netzmanagements 31

6. Unterthema: Schienenverkehrsmanagement 32
 Hintergrund ... 32
 Forschung .. 32
 Integriertes Schienenverkehrsmanagement 33
 Verbesserung der betrieblichen und technischen Interoperabilität .. 35

7. Unterthema: Management von See- und Binnenschiffsverkehr 39
 Hintergrund .. 39
 Forschung .. 39
 Sicheres, effizientes und umweltfreundliches Management der
 Seeschifffahrt .. 40
 Wettbewerbsfähiger, effizienter Binnenschiffsverkehr 44

8. Unterthema: Luftverkehrsmanagement 45
 Hintergrund .. 45
 Forschung .. 45
 Verkehrsmanagement des derzeitigen und künftigen Luftverkehrs .. 46
 Effizientes Management für erweiterte Flughafen-kapazitäten 49

9. Zukünftige Herausforderungen für Forschung und Politik 53
 Wichtige Forschungsschwerpunkte ... 53
 Universelle Forschungsthemen .. 55
 Selektive, verkehrsträgerspezifische Forschungsthemen 57
Städtischer Verkehr ... 57
Schienenverkehr ... 57
Schiffsverkehr (See-und Binnenschifffahrt) 58
Luftverkehr ... 58
Bibliografie ... 59
Glossar .. 60
ANHANG: Projekte nach Unterthema: 61
Vorwort

Die Thematischen Forschungsberichte stellen einen strukturierten Leitfaden zu den Ergebnissen der im Wesentlichen auf EU-Ebene durchgeführten Forschungsprojekte dar, die entweder als Bestandteil eines Rahmenprogramms oder als von der Europäischen Kommission (EK) in Auftrag gegebene Studie erfolgten. Die Berichte richten sich an politische Entscheidungsträger auf europäischer, nationaler und lokaler Ebene sowie an Interessenvertreter und Wissenschaftler.

Der Thematische Forschungsbericht zum Thema „Verkehrsmanagement“ behandelt eines von 24 Themen. Er beinhaltet:

- eine Übersicht der Forschungsaktivitäten zu spezifischen Aspekten des Verkehrs mit Schwerpunkt auf EU-finanzierten Projekten;
- eine Analyse und Zusammenfassung der Forschungsergebnisse und Empfehlungen.

Tabelle 1 enthält eine Übersicht aller Thematischen Forschungsberichte.
Tabelle 1: Forschungsgebiete in TRIP

<table>
<thead>
<tr>
<th>Themenbereiche</th>
<th>TRIP-Themengebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sektoren</td>
<td></td>
</tr>
<tr>
<td>Personenverkehr</td>
<td></td>
</tr>
<tr>
<td>Güterverkehr</td>
<td></td>
</tr>
<tr>
<td>Verkehrsträger</td>
<td></td>
</tr>
<tr>
<td>Luftverkehr</td>
<td></td>
</tr>
<tr>
<td>Eisenbahnverkehr</td>
<td></td>
</tr>
<tr>
<td>Straßenverkehr</td>
<td></td>
</tr>
<tr>
<td>Städtischer Verkehr</td>
<td></td>
</tr>
<tr>
<td>See- und Binnenschifffahrt</td>
<td></td>
</tr>
<tr>
<td>Multimodaler Verkehr</td>
<td></td>
</tr>
<tr>
<td>Politiken</td>
<td></td>
</tr>
<tr>
<td>Finanzierung, Preisgestaltung und Besteuerung</td>
<td></td>
</tr>
<tr>
<td>Regulierung und Wettbewerb im öffentlichen Verkehr</td>
<td></td>
</tr>
<tr>
<td>Infrastruktur und TEN-V</td>
<td></td>
</tr>
<tr>
<td>Raum- und Verkehrsplanung</td>
<td></td>
</tr>
<tr>
<td>Klimapolitik und Energieeffizienz</td>
<td></td>
</tr>
<tr>
<td>Verkehrssicherheit</td>
<td></td>
</tr>
<tr>
<td>Internationale Zusammenarbeit und EU-Nachbarschaftspolitik</td>
<td></td>
</tr>
<tr>
<td>Wahrnehmung, Information und Nutzerrechte</td>
<td></td>
</tr>
<tr>
<td>Technologie</td>
<td></td>
</tr>
<tr>
<td>Intelligente Verkehrssysteme</td>
<td></td>
</tr>
<tr>
<td>Innovative Technologien</td>
<td></td>
</tr>
<tr>
<td>Verkehrsmanagement</td>
<td></td>
</tr>
<tr>
<td>Bewertung</td>
<td></td>
</tr>
<tr>
<td>Langfristige Perspektiven</td>
<td></td>
</tr>
<tr>
<td>Bewertungsverfahren & Instrumente zur Entscheidungsunterstützung</td>
<td></td>
</tr>
<tr>
<td>Auswirkungen auf die Umwelt</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftliche und regionale Wirkungen</td>
<td></td>
</tr>
<tr>
<td>Erreichbarkeit, soziale Effekte und Gerechtigkeitsaspekte</td>
<td></td>
</tr>
</tbody>
</table>
Zusammenfassung

Dieser Thematische Forschungsbericht (TFB) zum Thema Verkehrsmanagement bietet einen Überblick über Forschungsprojekte, die als Teil des Sechsten und Siebten Rahmenprogramms der EU (RP6 und RP7) finanziert wurden. Diese Projekte werden in den folgenden sechs Unterthemen zusammengefasst:

- Verkehrsmanagement in der Stadt
- Güterverkehrsmanagement
- Straßennetz- und Straßverkehrsmanagement
- Schienen- und Schienenverkehrsmanagement
- Management von See- und Binnenschiffsverkehr und Infrastruktur
- Flugverkehrs- und Flughafenmanagement

Das Thema Straßennetz- und Straßenverkehrsmanagement umfasst nicht nur Strategien des Verkehrs- und Netzmanagements, sondern auch Verkehrs- und Sicherheitsanwendungen. In diesem Themenbereich werden Forschungsprojekte präsentiert, die sich mit den bis 2050 angestrebten Zielsetzungen befassen, die Verkehrsüberlastung zu verringern und die Zahl der Unfalltoten im Straßenverkehr auf null zu reduzieren. Im Rahmen weiterer Projekte werden innovative Lösungen vorgeschlagen, um die stets wachsende Transportnachfrage abzudecken, da sich die Infrastruktur ihren Leistungsgrenzen nähert.

Das Thema Flugverkehrs- und Flughafenmanagement stellt Forschungsprojekte zu den dringenden Fragen der Überlastung von Flughäfen und zur künftigen Entwicklung des Flugverkehrs vor. Die geprüften Projekte haben das Ziel, das Flugverkehrsmanagement zu verbessern und die Flughafenkapazitäten effizienter zu nutzen.

In einem Kommentar zu Schlussfolgerungen für die künftige Forschung und Politik äußert sich der externe Experte Professor Jacek Zak dahingehend, dass intelligente Transport- und Logistikkonzepte weiter entwickelt werden müssten. Er führt aus, dass sich künftige Forschungsarbeiten zu umweltfreundlichem Verkehr und komplexen Konzepten miteinander kombinieren ließen. Die Forschung zur Infrastruktur und zur Integration von Verkehrssystemen in technischer, wirtschaftlicher und informationstechnischer Hinsicht könnte sich hingegen stärker auf Prozesse der multikriteriellen Entscheidungsfindung berufen. Der Kommentar schließt mit verkehrsträgerspezifischen Empfehlungen für die künftige Forschung.
1. Einleitung

Der TFB bietet einen Überblick über die EU-finanzierte Forschungstätigkeit zum Verkehrsmanagement aller Verkehrsträger, sowohl für den Güter- als auch für den Personenverkehr. Der Themenbereich beschäftigt sich auch mit der Frage, wie sich die Nutzung bestehender Verkehrssysteme und Infrastrukturen beeinflussen lässt und stellt neue Ansätze zum Management und zur Steuerung des Verkehrs vor.

Die EU-Politik befasst sich mit dem Verkehrsmanagement im Rahmen von Maßnahmen, die darauf abzielen, das Verkehrs- und Infrastrukturmanagement auf operativer, taktischer und strategischer Ebene zu verbessern. Sie konzentriert sich hier insbesondere auf die beiden Bereiche Güterverkehr und Stadtverkehr. Für jeden Verkehrsträger gelten zudem spezifische politische Prioritäten und Entwicklungsstrategien, die schwerpunktmäßig auf das Verkehrsmanagements ausgerichtet sind.
Die geprüften Projekte werden in sechs Unterthemen gruppiert:

- Verkehrsmanagement in der Stadt
- Güterverkehrsmanagement
- Straßennetz- und Straßenverkehrsmanagement
- Schienennetz- und Schienenverkehrsmanagement
- See- und Binnenschiffsverkehr und Infrastrukturmanagement
- Flugverkehrs- und Flughafenmanagement

Das Verkehrsmanagement ist ein breit gefasstes Thema, das Überschneidungen mit anderen, durch TRIP abgedeckte Themenbereiche aufweist. Dieser TFB umfasst Projekte, die sich auf die Praxis des Verkehrsmanagements beziehen und Relevanz für die EU-Politik haben. Es wurden auch Projekte mit anderem Schwerpunkt aufgenommen, deren Ergebnisse jedoch dazu beitragen, das Verkehrs- und Infrastrukturmanagement zu verbessern (darunter innovative Technologien und intelligente Verkehrssysteme (IVS) für bessere Verkehrssteuerung und Verkehrsmanagement).

Die Forschungsprojekte sind im Anhang mit den Projekten der beiden Vorgänger-TFB zum Verkehrsmanagement aufgelistet.
2. Politischer Hintergrund

Das Verkehrsmanagement bildet in der europäischen Politik ein sehr wichtiges Thema, da es zur effizienten Nutzung von Ressourcen beiträgt. Dieser Abschnitt des Berichts deckt ein breites Spektrum an Verkehrsbereichen ab und umreißt die wichtigsten europäischen Richtlinien zum Thema Verkehrsmanagement, um bisherige Forschungsschwerpunkte zu identifizieren und die künftige Entwicklung der Forschung aufzuzeigen.

Das Weißbuch Verkehr 2011 ist ein Fahrplan zur Schaffung eines einheitlichen europäischen Verkehrsraums. Es schlägt für das kommende Jahrzehnt 40 Initiativen vor, um das Verkehrssystem wettbewerbsfähig und umweltfreundlich zu gestalten. Dieser Fahrplan für den Verkehr bis 2050 soll die Mobilität steigern, Emissionen senken und wichtige Barrieren und Engpässe abbauen.

Für die EU ist es unerlässlich, in Stadtgebieten ein reibungslos funktionierendes Verkehrssystem für Personen und Güter zu gewährleisten, welches das Wirtschaftswachstum fördert.

Der Einsatz von IVS trägt zu einem Verkehrsmanagement in Echtzeit bei und verringert die Beförderungszeiten und Staus im Verteilerverkehr über die letzten Kilometer. IVS-gestützte Maßnahmen des Verkehrsmanagements können zudem dazu beitragen, die Schnittstelle zwischen Langstrecken- und Verteilerverkehr über die letzten Kilometer effizienter zu gestalten. Der Verteilerverkehr stellt den ineffizientesten Teil des Güterverkehrs dar.

Die politischen Maßnahmen bezüglich des Verkehrsmanagements unterscheiden sich je nach Verkehrsträger.

Der Straßenverkehr macht derzeit den Großteil des Binnenverkehrsaufkommens und Güterverkehrs aus. Etwa 44% des Güter- und 73% des Personenverkehrs in der EU werden über die Straße befördert. Das wachsende Verkehrsvolumen hat eine zunehmende Überlastung der Straßen zur Folge und führt zu immer mehr Verkehrsunfällen, Luftverschmutzung und Produktivitätsausfällen. Die Verkehrsüberlastung kostet die Wirtschaft in der EU jährlich über 1% ihres BIP. Im Weißbuch Verkehr 2011 der EU wurde die Verkehrsüberlastung als eine der wichtigsten Herausforderungen im Straßenverkehr benannt.

Im Einklang mit den Nachhaltigkeitszielen der EU müssen Umwelt- und Sicherheitsfragen beim Management des Eisenbahnnetzes und des Eisenbahnverkehrs berücksichtigt werden.

Im Vergleich zu anderen Verkehrsträgern ist die Binnenschifffahrt zuverlässig, wirkt sich nur gering auf die Umwelt aus und bietet Kapazitäten für eine umfangreichere Nutzung. Dennoch ist ihr Anteil am EU-Verkehr nach wie vor relativ gering. Die Europäische Kommission fördert und stärkt die Wettbewerbsposition der Binnenschifffahrt und ihre Eingliederung in die intermodale Transportkette.

Im Luftverkehr ist das Verkehrsmanagement am weitesten fortgeschritten. Das für den effizienten, sicheren Betrieb des Flugverkehrs unerlässliche Flugverkehrsmanagement (Air Traffic Management/ATM) wird über Flugsicherungssysteme, Flughafenmanagement und Bordsysteme abgewickelt. Die hierfür wichtigsten EU-Gesetze sind das Paket Einheitlicher Europäischer Lufttraum (Single European Sky/SES) und dessen Neufassung, das Maßnahmenpaket Einheitlicher Europäischer Lufttraum II (SES II). Dieses Legislativpaket schafft einheitliche Anforderungen an Betrieb und Interoperabilität, um so die aktuellen Herausforderungen zu meistern, z. B. knapper werdende Kapazitäten, Sicherheit, Reduzierung von Umweltwirkungen und Steigerung der Kosteneffizienz. Der Plan zur Umsetzung des SES II unterstützt und stärkt das System der funktionalen Lufterubocks (FABs), das bis Dezember 2012 eingeführt werden soll. FABs gelten als leistungsfördernd und sollen sich auf die ATM-Landschaft und das europaweite Flugverkehrsmanagement ebenso positiv auswirken wie auf das Infrastrukturmanagement.

Das Projekt befindet sich derzeit in der Entwicklungsphase, in der eine neue Generation technologischer Systeme geschaffen wird. In diesem Rahmen bieten bessere Technologien für den Flugverkehr, darunter die Flugzeugpositionierung und Kommunikationstechnologien wie z. B. GALILEO neue Möglichkeiten, die Effizienz und Sicherheit des Flugverkehrs signifikant zu steigern.

3. Unterthema: Verkehrsmanagement in der Stadt

Dieser Abschnitt befasst sich mit bereits abgeschlossenen und noch laufenden Forschungsarbeiten zum Verkehrsmanagement in der Stadt. Es wird untersucht, wie sich das Verkehrsmanagement auf die Effizienz der städtischen Mobilität und die Begrenzung negativer Externalitäten auswirkt. Insbesondere werden zwei Bereiche von hohem Interesse benannt: Verkehrsmanagement in der Stadt zur Optimierung des Personenverkehrs und Steuerung der Verkehrsnachfrage hin zu nachhaltigem Nutzerverhalten.

Hintergrund

Forschung

In diesem Abschnitt bezieht sich Verkehrs- und Transportmanagement in Stadtgebieten auf den Personenverkehr. Aspekte des Güterverkehrsmanagements in Stadtgebieten sind in Abschnitt 4 dargestellt. Die Forschung konzentriert sich auf innovative Konzepte, um das Verkehrsmanagement durch bessere Transportmöglichkeiten zu verbessern oder die Verkehrsnachfrage zu beeinflussen. Die Forschungsprojekte sind in zwei Cluster gegliedert:

Eine erste Projektgruppe, Verkehrsmanagement in der Stadt, befasst sich mit Managementlösungen zur Optimierung des Personenverkehrs, insbesondere sollen Multimodalität und Informationsangebote (Beispiel OPTIMISM-Projekt) verbessert und die
Organisation von Großveranstaltungen (Beispiel STADIUM-Projekt) erleichtert werden. IVS-Lösungen zur Verbesserung des Verkehrsmanagements in Städten wurden im Rahmen des CONDUITS-Projekts untersucht und analysiert.

Verkehrsmanagement in der Stadt

Das CONDUITS-Projekt (*Coordination of network descriptors for urban intelligent transportation systems, RP7, 2009-2011*) untersucht die aktuelle und potenzielle Nutzung von IVS im städtischen Verkehrsmanagement. Damit die Städte die erzielten Fortschritte tatsächlich bewerten können, werden im Rahmen des Projekts eine Reihe von Kennzahlen vorgestellt, um die Leistung von Verkehrsmanagement und IVS zu beurteilen.

Die folgenden **CIVITAS**-Projekte enthalten Demonstrationsvorhaben oder Pilotinitiativen zum städtischen Verkehrsmanagement:

Das **MOBILIS**-Projekt (*Mobility Initiatives for Local Integration and Sustainability, RP6, 2005–2009*) setzte Maßnahmen des städtischen Verkehrsmanagements zur Zufahrts- und Parkraumbewirtschaftung in Venedig (Italien), Debrecen (Ungarn) und Toulouse (Frankreich) um. Darüber hinaus wurde in Venedig die satellitengestützte Steuerung öffentlicher Verkehrsträger auf dem Wasserweg getestet. So konnte die Flotte öffentlicher Boote dynamisch verwaltet und auf Verkehrsnöte flexibel reagiert werden.

Das **SMILE**-Projekt (*Sustainable urban transport for the Europe of tomorrow, RP6, 2005–2009*) führte in Norwich (Großbritannien) eine Niedrigemissionszone und in Malmö (Schweden) satellitengestütztes Verkehrsmanagement ein.

Das **CARAVEL**-Projekt (*Travelling Towards a New Mobility, RP6, 2005–2009*) implementierte in Burgos (Spanien) eine Parkraum- und Managementstrategie und schuf ein System zur Visualisierung des Verkehrs. Darüber hinaus wurden in Krakau (Polen) eine integrierte Strategie für die Zufahrtskontrolle und in Stuttgart (Deutschland) ein speziell auf Veranstaltungen ausgerichtetes Verkehrsmanagement mit IT-Unterstützung eingeführt.
Das SUCCESS-Projekt (*Smaller Urban Communities in CIVITAS for Environmentally Sustainable Solutions, RP6, 2005-2009*) testete in Ploiesti (Rumänien) ein Echtzeit-Informationssystem. Ferner wurden in Preston (Großbritannien) verschiedene Planungs- und Infrastrukturmaßnahmen für alternative Verkehrsträger umgesetzt, welche auch die Integration von Verkehrsinformationssystemen, eine verbesserte Datenerhebung für den Transport sowie eine Parkraumstrategie und -bewirtschaftung einschlossen.

Das MODERN-Projekt (*Mobility, Development and Energy Use Reduction, RP7, 2008-2012*) setzte in Craiova (Rumänien) Zufahrtsbeschränkungen um und testete in Vitoria-Gasteiz (Spanien) und Coimbra (Portugal) Informations- und Verkehrsmanagement-Systeme.

Steuerung der Verkehrsnachfrage

Das **DEMOCRITOS-**Projekt (*Developing the Mobility Credits Integrated Platform to enable travellers to improve urban transport sustainability, RP7, 2009–2011*) stellte das Modell zum Sammeln von Mobilitätpunkten als ein flexibles Instrument vor, um die städtische Mobilitätsnachfrage auf ein umweltfreundliches Niveau zu senken. Das Mobilitätpunkte-System ist eine verkehrsspezifische Plattform, die es Reisenden, Mobilitätsanbietern, Technologieanbietern und Verkehrsplanern ermöglicht, die Auswirkungen der Klimapolitik besser zu verstehen und die Auswirkungen veränderter Verhaltensweisen und Mobilitätsentscheidungen besser abzuschätzen.

Die folgenden **CIVITAS**-Projekte enthalten Demonstrationsvorhaben und Pilotinitiativen zum Mobilitätsmanagement:

Das **CARAVEL**-Projekt *(Travelling Towards a New Mobility, RP6, 2005–2009)* schuf in Burgos (Spanien) ein Mobilitätsforum, das auch in Krakau (Polen) zum Einsatz kam.

Das **MOBILIS**-Projekt *(Mobility Initiatives for Local Integration and Sustainability, RP6, 2005–2009)* konzentrierte sich in der Hafenstadt Odense (Dänemark) auf MM und in Toulouse (Frankreich) auf Mobilitätspläne für Pendler.

Das **SMILE**-Projekt *(Sustainable urban transport for the Europe of Tomorrow, RP6, 2005–2009)* setzte in Suceava (Rumänien) Maßnahmen für verbesserte Informationen zum öffentlichen Personenverkehr um und schuf in Potenza (Italien) ein Mobilitätszentrum.

Das **ELAN**-Projekt *(RP7, 2008–2012)* untersuchte das Mobilitätsmanagement für Unternehmen und Schulen in Gent (Belgien) und für große Institutionen in Zagreb (Kroatien).

Das **MODERN**-Projekt (*Mobility, Development and Energy Use Reduction, RP7, 2008-2012*) entwickelte Softwaretools für das Mobilitätsmanagement in Industriegebieten von Craiova (Rumänien) und das Mobilitätsmanagement in Coimbra (Portugal).

4. Unterthema: Güterverkehrsmanagement

Hintergrund

Forschung

Der zweite Cluster befasst sich mit strategischem Fracht- und Logistikmanagement. Darunter zusammengefasst sind Projekte zur Förderung der Ko-Modalität, darunter BE-LOGIC, KOMODA und CO3 zur Bündelung der Verkehrsnachfrage.
Der Cluster untersucht auch, inwiefern Betreiber und Interessenvertreter Strategien des Güterverkehrs-managements untereinander austauschen, z. B. im Projekt BESTFACT. Darüber hinaus gibt es Studien zu der Frage, wie die künftige Forschung zum Transportmanagement im Güterverkehr verbessert werden kann, z. B. FREIGHTVISION.

Technische Aspekte des Güterverkehrsmanagements und der Logistik

Das **COMCIS-**Projekt (Collaborative Information Services for Container Management, RP7, 2011–2013) befasst sich mit der Interoperabilität von e-Freight-Systemen, die als Teil früherer EU-Projekte und von kommerziellen Unternehmen entwickelt wurden.
Das Projekt wird e-Freight-Systeme wie Logit 4SEE (Freightwise), Smart-CM Neutral Layer und ICS-SEAP (Smart-CM), SICIS (Integrity), Port Community Systems (Descartes) und kommerzielle Plattformen (z. B. DHL) mit einbinden. Interoperable e-Freight-Systeme bieten Informationen, die die Durchlaufzeiten reduzieren und die Zuverlässigkeit der Logistikketten steigern.

Das **E-FREIGHT**-Projekt (**European e-freight capabilities for co-modal transport, RP7, 2010-2013**) ist ein laufendes Projekt im Zuge dessen eine Plattform geschaffen werden soll, die Konzeptionierung, Entwicklung, Bereitstellung und Wartung von e-Freight-Lösungen ermöglicht und unterstützt. e-Freight bietet die folgenden Vorteile:

- **Verkehrsnutzer** (Verlader, Spediteure usw.) können die für ihre Zwecke am besten geeigneten direkten oder kombinierten Verkehrsdienste erkennen und nutzen.

- **Transportdienstleister** für alle Verkehrsträger stellen Informationen über ihre Serviceangebote bereit und tauschen mit allen relevanten Akteuren Informationen über die Planung, die Durchführung und den Abschluss von Transportvorgängen elektronisch aus.

- **Anbieter von Verkehrsinfrastruktur** können die bestmögliche Nutzung der gesamten Verkehrsinfrastruktur ermöglichen und Verkehrsnutzer darin unterstützen, indem sie relevante Informationen über Verfügbarkeit und Nutzungsmöglichkeiten bereitstellen.

- **Verkehrsaufsichtsbehörden** können die Informationen, die sie benötigen, um die Einhaltung geltender Regelungen zu überwachen, auf einfachste Weise beziehen und Informationen mit anderen Behörden austauschen. So können sie beim Risikomanagement von Umwelt- und Sicherheitsfragen effektiv zusammenzuarbeiten.

Diese Lösungen werden anhand von wirtschaftlichen Szenarien und Pilotprojekten mit Interessenvertretern, darunter große und kleine Unternehmen und Verkehrsbehörden, validiert. Das Projekt zielt auf „intelligente Fracht“ ab, d. h. die Güter selbst werden mit Informationen zu ihrem Kontext und Standort versehen und mit verschiedensten Informationsdiensten verbunden sein und damit das Transportmanagement noch stärker automatisieren.
Strategisches Gütermanagement und strategische Logistik

Das CO3-Projekt (Collaboration Concepts for Co-modality, RP7, 2011-2014) untersucht innovative Lösungen für die bessere Ausnutzung von Kapazitäten im europäischen Güterverkehrssystem durch kollaborativen Transport („carpooling for cargo“). CO3 ist eine Unternehmensstrategie, die es den einzelnen Unternehmen der Lieferkette ermöglicht, Logistik und Transportdienste durch höhere Ladefaktoren und weniger Leerfahrten zu optimieren und so die Ko-Modalität zu fördern.

Ziel des Projekts war es, die wichtigsten Akteure für Innovation zu identifizieren und zu beurteilen, wie Innovation auf dem Markt angenommen wird und sich verbreitet. Ferner wurde geprüft, ob Innovation durch politische und andere Maßnahmen und durch die Bildung von Netzwerken angeregt wird. Im Rahmen des Projekts wurden die wichtigsten Determinanten erfolgreicher innovativer Konzepte untersucht und klare politische Schlussfolgerungen formuliert, wie Regierungen auf die eingangs erwähnten Probleme reagieren sollten.
5. Unterthema: Straßenverkehrsmanagement

Hintergrund

Forschung

Der zweite Cluster, Strategien des Verkehrs- und Straßennetzmanagements, zeigt innovative Lösungen für die anhaltende Nachfrage nach Personenbeförderung und Gütertransport in einem Umfeld, in dem sich die Infrastruktur ihrer Kapazitätsgrenze nähert. Relevante Forschung, z. B. im Rahmen des ARCHES- oder TRIMM-Projekts, sucht nach Antworten auf die Frage, wie die Straßeninfrastruktur effizienter genutzt werden kann, gleichzeitig aber steigende Ansprüche an Sicherheit und Zuverlässigkeit erfüllt werden können.

Anwendungen des Verkehrsmanagements, einschließlich Sicherheit

Strategien des Verkehrs- und Netzmanagements

6. Unterthema:

Schienenverkehrsmanagement

In diesem Abschnitt wird besonderer Wert auf Managementaspekte des Eisenbahnsektors gelegt, die zur Schaffung eines integrierten und zuverlässigen europäischen Eisenbahnsystems beitragen. Insbesondere werden Aktivitäten des integrierten Schienenverkehrsmanagements vorgestellt. Der Schwerpunkt liegt auf den administrativen und institutionellen Aspekten des Schienenverkehrs und auf den Maßnahmen zur Verbesserung der technischen Interoperabilität bezüglich Instandhaltung und Sicherheit.

Hintergrund

Der Aufbau eines modernen, wettbewerbsfähigen Schienennetzes ist eine der obersten Prioritäten in Europa, um den EU-Binnenmarkt zu fördern und ein nachhaltiges Verkehrssystems zu entwickeln. Die im Folgenden vorgestellten Forschungsprojekte unterstützen die politischen Ziele, ein integriertes europäisches Eisenbahnsystem zu schaffen, bessere Interoperabilität zwischen nationalen Eisenbahnen zu gewährleisten und den Bahnbetrieb nachhaltiger zu gestalten.

Forschung

Die Projekte im ersten Cluster, integriertes Schienenverkehrsmanagement, wirken sich auf die Leistung der europäischen Eisenbahnen aus, indem sie Managementpraktiken optimieren und die Zusammenarbeit zwischen den beteiligten Akteuren fördern. Diese Projekte konzentrieren sich auf institutionelle, administrative und rechtliche Aspekte.

Integriertes Schienenverkehrsmanagement

Im Anschluss an das NEW-OPERA-Projekt wurde NEW-OPERA AISBL als internationale gemeinnützige Vereinigung gegründet, um die Projektaktivitäten fortzusetzen.

Verbesserung der betrieblichen und technischen Interoperabilität

Hochfrequente Störungen im Schienennetz, vor allem in den Kommunikationssystemen zwischen den Zügen und in der Infrastruktur, wurden untersucht.

Das **ACEM-RAIL-**Projekt (*Automated and cost effective maintenance for railway, RP7, 2010–2013*) untersucht, wie Kosten, Zeit und Ressourcen bei der Instandhaltung von Eisenbahninfrastruktur reduziert werden können. Technologien für die automatisierte und kostengünstige Kontrolle des Gleiszustands werden entwickelt und entsprechende
Prototypen gefertigt. Für eine optimal geplante Instandhaltung der Infrastruktur werden Algorithmen entwickelt, die auch präventive und korrektive Maßnahmen in den Terminplan einbeziehen. Gleichzeitig werden automatisierte und optimierte Überwachungssysteme etabliert.

Das **INTERAIL**-Projekt (Development of a novel integrated inspection system for the accurate evaluation of the structural integrity of rail tracks, RP7, 2009–2012) entwickelt ein integriertes Hochgeschwindigkeitssystem für die schnelle und zuverlässige Inspektion von Gleisen und setzt dieses in der Praxis um. Das System basiert auf automatisierter, visueller Wechselstrom-Feldmessung (ACFM) und Ultraschall-Techniken, die in einer einzig Architektur kombiniert werden. Das System wird mit neuartigen semi-automatisierten Testvorrichtungen arbeiten, um die während der Schnellprüfung festgestellten Mängel genau zu prüfen und auszuwerten.

Das **SMART-RAIL**-Projekt (Smart Maintenance and Analysis of Transport Infrastructure RP7, 2011–2014) senkt Ersatzkosten, reduziert Verzögerungen und entwickelt umweltfreundliche Lösungen für die Instandhaltung alternder Eisenbahnnetzinfrastruktur. Es werden hoch moderne Methoden entwickelt, um die Sicherheit der Eisenbahninfrastruktur zu überwachen und zu beurteilen. Diese Beurteilungen werden zugrunde gelegt, um Sanierungsstrategien zu erarbeiten, die kosteneffektiv und mit minimalen Umweltwirkungen dazu beitragen, die Lebensdauer der Infrastruktur zu verlängern.

Das **ALARP**-Projekt (Railway automatic track warning system based on distributed personal mobile terminals, RP7, 2010–2012) konzipiert und entwickelt ein innovatives, effizienteres System für automatische Warnungen am Gleis, um die Sicherheit von Streckenpersonal zu verbessern.

Das MAINLINE-Projekt (MAINtenance, renewal and Improvement of rail transport iNfrastructure to reduce Economic and environmental impacts, RP7, 2011-2014) befasst sich mit neuen Technologien, um die Lebensdauer der Infrastruktur zu verlängern. Es erarbeitet Modelle für realistischere Schätzungen der Lebenszykluskosten und zur verbesserten Sicherheit. Im Rahmen des Projekts werden neue Konstruktionsverfahren entwickelt, die eingesetzt werden, sobald veraltete Infrastrukturen ausgetauscht werden müssen. Ferner werden Überwachungstechniken und Managementtools entwickelt, um die ökologischen und wirtschaftlichen Wirkungen über die gesamte Lebensdauer hinweg beurteilen zu können.
7. Unterthema: Management von See- und Binnenschiffsverkehr

Hintergrund

Forschung

Die Forschungsprojekte in diesem Unterthema sind in zwei Cluster zusammengefasst: sicheres, effizientes und umweltfreundliches Management der Seeschifffahrt und wettbewerbsfähiger, effizienter Binnenschiffsverkehr.

Der erste Cluster befasst sich mit Forschungsprojekten, die zu **sicherem, effizientem und umweltfreundlichem Management der Seeschifffahrt** in Europa beitragen. Forschungsprojekte zeigen, dass es noch viel zu tun gibt, ehe der Seeverkehr ein effizienter, nachhaltiger Verkehrsträger wird. Projekte wie FLAGSHIP, MARNIS, NAVTRONIC und ARIADNA haben zum Ziel, den Verwaltungsaufwand für die Besatzung zu reduzieren. Sicherheit ist ein wichtiger Aspekt der Seeverkehrspolitik der EU. In Notfällen, bei schwernen Wetterbedingungen oder in anderen Gefahrsituationen kann das Management der Seeschifffahrt durch Entscheidungshilfesysteme unterstützt werden, wie sie z. B. in Projekten
wie ADOPT und HANDLING WAVES, DSS-DC, FLOODSTAND und SAFEWIN entwickelt wurden. Das HORIZON-Projekt konzentrierte sich auf den Faktor Mensch in der Verkehrssicherheit und untersuchte, welche Ermüdungserscheinungen der Besatzung während langer Schichten auftreten. Das SAFELOAD-Projekt befasste sich mit dem operativen Management in der Seeschifffahrt und schlug innovative Lösungen für die Entladung von Flüssigerdgas vor. Das ARGOMARINE-Projekt konzentriert sich auf die Überwachung des Seeschiffsverkehrs und der damit verbundenen Umweltverschmutzung. Alle Projekte im ersten Cluster tragen zum EU-Ziel bei, durch die Vereinfachung des Seeverkehrs und seines betrieblichen Managements den Seeverkehr umweltfreundlicher zu gestalten.

Die Integration des Binnenschiffsverkehrs in die intermodale Logistikkette gilt als der nächste Schritt, um die Wettbewerbsposition dieses Verkehrsträgers zu fördern. In der zweiten Projektkategorie, wettbewerbsfähiger, effizienter Binnenschiffsverkehr, wird das RISING-Projekt vorgestellt, das die Wettbewerbsposition der europäischen Binnenwasserstraßen stärken möchte.

Sicheres, effizientes und umweltfreundliches Management der Seeschifffahrt

Das Toolkit beinhaltet außerdem mathematische Modelle zur Vorhersage, auf welchen Teilen einer Reise Müdigkeit zu einem kritischen Faktor werden kann, und welche Maßnahmen dagegen ergriffen werden können. Es wurde auch ein Tool entwickelt, um das Auftreten von Müdigkeit zu prognostizieren (MARTHA).

Wettbewerbsfähiger, effizienter Binnenschiffsverkehr

8. Unterthema: Luftverkehrsmanagement

Hintergrund

Forschung

Forschungsarbeiten zum Luftverkehr und Flughafenmanagement behandeln nicht nur dringende Probleme der Flughafenüberlastung und begrenzter Flughafenkapazitäten, sondern befassen sich auch mit der Umsetzung des SESAR-Programms, des ATM-Systems und der Vorbereitung auf künftige Entwicklungen im Luftverkehr. Forschungsprojekte wurden in zwei Cluster gruppiert: Verkehrsmanagement des derzeitigen und künftigen Luftverkehrs und effizientes Management für die Erweiterung von Flughafenkapazitäten.

Projekte im ersten Cluster, Verkehrsmanagement des derzeitigen und künftigen Luftverkehrs, liefern Daten zum Luftverkehrsmanagement insgesamt ebenso wie zu spezifischen Aspekten. Auf breiter Ebene sind Rückmeldungen zum SESAR-Programm und zu Flugsicherungskonzepten erforderlich, um vorbildliche Praktiken zu identifizieren und aus aktuellen Instrumenten der Politik und des Managements Schlussfolgerungen für weitere Verbesserungen zu ziehen (EPISODE 3, CAATS II).

Der zweite Cluster beinhaltet Projekte zur Effizienzsteigerung im Flughafenmanagement für erweiterte Kapazitäten und weniger Überlastung. Die Projekte BEMOSA und OPTAG untersuchten menschliches Verhalten an Flughäfen und empfehlen Managementmaßnahmen, um Verspätungen zu reduzieren und die Flughafensicherheit zu verbessern. Andere Projekte konzentrieren sich auf die Erweiterung von Flughafenkapazitäten durch innovative Ansätze zum Management von Flughafenhöfen und -bereichen. Zu diesen Projekten gehören:

- OPTIMAL, SAFE-AIRPORT zur Verbesserung von Anflug- und Landeabläufen
- AVITRACK, AAS und AIRNET untersuchen speziell Abläufe im Vorfeldbereich
- ISMAEL – neue Konzepte zum Management von Oberflächenbewegungen

Verkehrsmanagement des derzeitigen und künftigen Luftverkehrs

Das **CAATS II**-Projekt (*Cooperative Approach to Air Traffic Services, RP6, 2006–2009*) setzte das CAATS-Projekt fort und verwaltete, konsolidierte und verbreitete das hierfür in europäischen ATM-Projekten gesammelte Wissen.
Bewährte Praktiken und Leitlinien wurden erarbeitet. Für die Methodik zur Validierung des europäischen Betriebskonzepts wurde eine Leitlinie erstellt, die Sicherheit, menschliche Faktoren und wirtschaftliche und Umweltszenarien berücksichtigt. Das Betriebskonzept wurde anhand von ATM-Nutzererwartungen validiert.

Das SVETLANA-Projekt (Safety and maintenance improVEMENT Through automated flight data ANALysis, RP7, 2010–2012) entwickelt einen automatisierten, standardisierten Zyklus für das Management von Flugdaten, um große Datenmengen routinemäßig verarbeiten zu können und Betreibern so die Prüfung aller Daten für alle Flüge zu ermöglichen.

Effizientes Management für erweiterte Flughafen-kapazitäten

9. Zukünftige Herausforderungen für Forschung und Politik

Von Professor Jacek Zak, externer Experte

Wichtige Forschungsschwerpunkte

Die wichtigsten Richtungen in der Forschung zum Verkehrsmanagement, die sich mit universellen, verkehrsträger- bzw. Lastneutralen Themen befassen, sind:

- Verbesserung der Sicherheit von Verkehrsdiensten, Prozessen und Systemen;
- Konzeption und Entwicklung integrierter, koordinierter multimodaler Verkehrs-lösungen;
- Förderung intelligenter Verkehrsdienste, die von modernen Informations- und Kommunikationstechnologien (IKT) und computergestützten Entscheidungshilfen unterstützt werden;
• Umweltfreundlichkeit und Nachhaltigkeit des Verkehrs;
• Anerkennung und Abwägung der Anliegen verschiedener Interessenvertreter bei
 Transportaktivitäten, Suche nach Kompromissen und kollaborativen Lösungen.

Diese Themen stehen im Zusammenhang mit der EU-Verkehrspolitik zum Personen- und
Güterverkehr.

Gemäß der EU-Verkehrspolitik und ihren Zielen gehören die folgenden Forschungsthemen
zu den verkehrsträger- und lastspezifischen Themen:

• Verkehrs- und Mobilitätsmanagement in städtischen Gebieten, deren Schwerpunkt auf
 Lösungen für die chronische Verkehrsüberlastung in europäischen Städten liegt
 (Stadtverkehr und öffentliche Verkehrsträger);
• Konzeption und Entwicklung computergestützter multimodaler Tür-zu-Tür-Verkehrs-
 lösungen für zuverlässige, effiziente Warenströme in Logistikketten (Güterverkehrs-
 management und Logistikketten);
• Innovative, sichere Lösungen für die effiziente Nutzung von Straßeninfrastrukturen
 und Flotten, um der stetig wachsenden Straßenverkehrsnachfrage für die Beförderung
 von Personen und Gütern gerecht zu werden (Management von Straßennetzen und
 Straßenverkehr);
• Schaffung eines integrierten, interoperablen, zuverlässigen und effizienten europäischen
 Schienenverkehrssystems (Management von Schienennetzen und Schienenverkehr);
• Unterbindung unternormigen Schiffsverkehrs und Vermeidung schwerer Seeunfälle,
 die für Mensch und Umwelt eine ernste Bedrohung darstellen können. Förderung und
 Stärkung der Wettbewerbsfähigkeit der Binnenschifffahrt für eine bessere Einbindung
 in intermodale Transportketten (See- und Binnenschiffsverkehr und
 Infrastrukturmanagement);
• Verbesserung der Systeme und Prozesse des Flugverkehrsmanagements (ATM) und
 der Flugsicherung (ATC) für die effizientere Nutzung des Luftraums. Gewährleistung
 hoher Sicherheitsstandards und Steigerung der Effizienz im Flughafenmanagement,
 um so die Nutzung von Flughafenkapazitäten zu verbessern und der zunehmenden
 Überlastung zu begegnen (Flugverkehrs- und Flughafenmanagement).

Universelle Forschungsthemen

Würden zufrieden stellende Lösungen akzeptiert, statt weiterhin nach der besten oder optimalen Lösung zu suchen, bedeutete dies, anzuerkennen, dass in Verkehrssystemen Kompromisse geschlossen werden müssen. Dies entspricht auch den Vorgaben der EU-Politik zum nachhaltigen Verkehr.

Selektive, verkehrsträgerspezifische Forschungsthemen

Städtischer Verkehr

Das breite Spektrum des Verkehrsmanagements in der Stadt umfasst folgende Aspekte:

- Datenextraktion und -exploration, insbesondere zum Reiseverhalten;
- Entwicklung von Echtzeit-Fahrgastinformationssystemen und fortschrittlichen elektronischen Planungshilfen im öffentlichen Personenverkehr (Internet und Mobilgeräte);
- Entwicklung von computergestützten Instrumenten für das Verkehrsmanagement auf operativer, taktischer und strategischer Ebene.

Straßenverkehr und städtischer Verkehr

Schienenverkehr

Schiffsverkehr (See-und Binnenschifffahrt)

Weitere Forschung sollte zum „e-Verkehr in der Schifffahrt“ (See- und Binnenschifffahrt) durchgeführt werden. Es müssen innovative, IKT-gestützte Konzepte entwickelt werden, um die Wettbewerbsfähigkeit des Schiffsverkehrs zu steigern. Diese Konzepte sollten sich auf die Prinzipien der Intermodalität, der ökologischen Nachhaltigkeit und der Kosteneffizienz stützen und die unzureichende Nutzung der Infrastruktur im Schiffsverkehr beheben.

Luftverkehr

Bibliografie

<table>
<thead>
<tr>
<th>ATC</th>
<th>Flugsicherung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Flugverkehrsmanagement</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>CIVITAS</td>
<td>Initiative Stadt - Vitalität - Nachhaltigkeit</td>
</tr>
<tr>
<td>DSS</td>
<td>Entscheidungsunterstützungssystem</td>
</tr>
<tr>
<td>EFR</td>
<td>Europäischer Forschungsraum</td>
</tr>
<tr>
<td>EK</td>
<td>Europäische Kommission</td>
</tr>
<tr>
<td>ERTMS</td>
<td>Europäisches Eisenbahnverkehrsleitsystem</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FAB</td>
<td>Funktionale Luftraumblocks</td>
</tr>
<tr>
<td>GD MOVE</td>
<td>Generaldirektion Mobilität und Verkehr</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnologien</td>
</tr>
<tr>
<td>IVS</td>
<td>Intelligente Verkehrssysteme</td>
</tr>
<tr>
<td>LNG</td>
<td>Flüssiges Erdgas</td>
</tr>
<tr>
<td>MM</td>
<td>Mobilitätsmanagement</td>
</tr>
<tr>
<td>RBT</td>
<td>Referenztrajektorie</td>
</tr>
<tr>
<td>RIS</td>
<td>Binnenschifffahrtsinformationsdienste</td>
</tr>
<tr>
<td>RP6</td>
<td>Sechstes Rahmenprogramm</td>
</tr>
<tr>
<td>RP7</td>
<td>Siebtes Rahmenprogramm</td>
</tr>
<tr>
<td>RRS</td>
<td>Fahrzeugrückhaltesystem</td>
</tr>
<tr>
<td>SES II</td>
<td>Einheitlicher europäischer Luftraum II</td>
</tr>
<tr>
<td>TEN-V</td>
<td>Transeuropäisches Verkehrsnetz</td>
</tr>
<tr>
<td>TFB</td>
<td>Thematischer Forschungsbericht</td>
</tr>
<tr>
<td>TRIP</td>
<td>Transport Research and Innovation Portal</td>
</tr>
</tbody>
</table>
ANHANG: Projekte nach Unterthema:

<table>
<thead>
<tr>
<th>Unterthema: Verkehrsmanagement in der Stadt</th>
<th>Akronym</th>
<th>Titel</th>
<th>Finanzierungs- programm</th>
<th>Projektwebsite</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>STADIUM</td>
<td>STADIUM</td>
<td>Smart Transport Applications Designed for Large Events with Impacts on Urban Mobility</td>
<td>RP7</td>
<td>www.stadium-project.eu/site</td>
<td>2009–2013</td>
</tr>
<tr>
<td>MOBILIS</td>
<td>MOBILIS</td>
<td>Mobility Initiatives for Local Integration and Sustainability</td>
<td>RP6</td>
<td>www.civitas-mobilis.org</td>
<td>2005–2009</td>
</tr>
<tr>
<td>CARAVEL</td>
<td>CARAVEL</td>
<td>Travelling Towards a New Mobility</td>
<td>RP6</td>
<td>www.civitas-caravel.org</td>
<td>2005–2009</td>
</tr>
<tr>
<td>Project</td>
<td>Description</td>
<td>Grant</td>
<td>Website</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>MIMOSA</td>
<td>Coordination of network descriptors for urban intelligent transportation systems</td>
<td>RP7</td>
<td>www.civitas-mimosa.eu</td>
<td>2008–2012</td>
<td></td>
</tr>
<tr>
<td>DEMOCRITOS</td>
<td>Developing the Mobility Credits Integrated Platform to enable travelers to improve urban transport sustainability</td>
<td>RP7</td>
<td>www.democritos.ipacv.ro</td>
<td>2009–2011</td>
<td></td>
</tr>
<tr>
<td>Akronym</td>
<td>Titel</td>
<td>Finanzierungsprogramm</td>
<td>Projektwebsite</td>
<td>Dauer</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------</td>
<td>---</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>FIDEUS</td>
<td>Freight Innovative Delivery in European Urban Space</td>
<td>RP6</td>
<td>N/A</td>
<td>2005–2008</td>
<td></td>
</tr>
<tr>
<td>SMART-CM</td>
<td>Smart Container Chain Management</td>
<td>RP7</td>
<td>www.smart-cm.eu</td>
<td>2008–2011</td>
<td></td>
</tr>
<tr>
<td>COMCIS</td>
<td>Collaborative Information Services for Container Management</td>
<td>RP7</td>
<td>www.logit-systems.com</td>
<td>2011–2013</td>
<td></td>
</tr>
<tr>
<td>E-FREIGHT</td>
<td>European e-freight capabilities for co-modal transport</td>
<td>RP7</td>
<td>www.efreightproject.eu</td>
<td>2010–2013</td>
<td></td>
</tr>
<tr>
<td>FREIGHTVISION</td>
<td>Freight Transport FORESIGHT 2050</td>
<td>RP7</td>
<td>www.freightvision.eu</td>
<td>2008–2010</td>
<td></td>
</tr>
<tr>
<td>BESTFACT</td>
<td>Best Practice Factory for Freight Transport</td>
<td>RP7</td>
<td>www.bestfact.net</td>
<td>2012–2015</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>Collaboration Concepts for Co-modality</td>
<td>RP7</td>
<td>www.co3-project.eu</td>
<td>2011–2014</td>
<td></td>
</tr>
<tr>
<td>STRAIGHTSOL</td>
<td>STRAtegies and measures for smarter urban freIGHT SOLutions</td>
<td>RP7</td>
<td>www.straightsol.eu</td>
<td>2011–2014</td>
<td></td>
</tr>
</tbody>
</table>
Unterthema: Straßenverkehrsmanagement

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Titel</th>
<th>Finanzierungsprogramm</th>
<th>Projektwebsite</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART RRS</td>
<td>Innovative concepts for smart road restraint systems to provide greater safety for vulnerable road users</td>
<td>RP7</td>
<td>www.smartrrs.unizar.es</td>
<td>2008–2012</td>
</tr>
<tr>
<td>Asset Road</td>
<td>ASSET Advanced Safety and Driver Support in Essential Road Transport</td>
<td>RP7</td>
<td>www.project-asset.com</td>
<td>2008–2011</td>
</tr>
<tr>
<td>TRIMM</td>
<td>Tomorrow's Road Infrastructure Monitoring and Management</td>
<td>RP7</td>
<td>www.trimm.fehrl.org</td>
<td>2011–2014</td>
</tr>
<tr>
<td>HEAVYROUTE</td>
<td>Intelligent route guidance of heavy vehicles</td>
<td>RP6</td>
<td>N/A</td>
<td>2006–2009</td>
</tr>
<tr>
<td>ARCHES</td>
<td>Assessment and rehabilitation of Central European Highway Structures</td>
<td>RP6</td>
<td>N/A</td>
<td>2006–2009</td>
</tr>
</tbody>
</table>
Unterthema: Schienenverkehrsmanagement

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Titel</th>
<th>Finanzierungs-programm</th>
<th>Projektwebsite</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFRAGUIDER</td>
<td>Infrastructure guidelines for environmental railway performance</td>
<td>RP7</td>
<td>N/A</td>
<td>2009–2010</td>
</tr>
<tr>
<td>RAILCOM</td>
<td>Electromagnetic compatibility between rolling stock and rail infrastructure encouraging European interoperability</td>
<td>RP6</td>
<td>N/A</td>
<td>2005–2008</td>
</tr>
<tr>
<td>SAFE-RAIL</td>
<td>Development of an Innovative Ground-Penetrating Radar System for Fast and Efficient Monitoring of Rail-Track Substructure Conditions</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2008</td>
</tr>
<tr>
<td>SMART-RAIL</td>
<td>Smart Maintenance and Analysis of Transport Infrastructure</td>
<td>RP7</td>
<td>N/A</td>
<td>2011–2014</td>
</tr>
<tr>
<td>MAINLINE</td>
<td>MAINtenance, renewaL and Improvement of rail transport iNfrastucture to reduce Economic and environmental impacts</td>
<td>RP7</td>
<td>http://mainline-project.eu/</td>
<td>2011–2014</td>
</tr>
</tbody>
</table>
Unterthema: Management von See- und Binnenschiffsverkehr

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Titel</th>
<th>Finanzierungsprogramm</th>
<th>Projektwebsite</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARNIS</td>
<td>Maritime Navigation and Information Services</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2008</td>
</tr>
<tr>
<td>DSS-DC</td>
<td>Decision Support System for Ships in Degraded Condition</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2007</td>
</tr>
<tr>
<td>HORIZON</td>
<td>Research into the effects of sleepiness on the cognitive performance of maritime watch keepers under different watch patterns, using ships’ bridge, engine and liquid cargo handling simulators</td>
<td>RP7</td>
<td>N/A</td>
<td>2009–2012</td>
</tr>
<tr>
<td>NAVTRONIC</td>
<td>Navigational System for Efficient Maritime Transport</td>
<td>RP7</td>
<td>N/A</td>
<td>2009–2012</td>
</tr>
<tr>
<td>RISING</td>
<td>RIS Services for Improving the Integration of Inland Waterway Transport into Intermodal Chains</td>
<td>RP7</td>
<td>http://www.rising.eu/web/guest/home</td>
<td>2009–2011</td>
</tr>
</tbody>
</table>
Unterthema: Luftverkehrsmanagement

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Titel</th>
<th>Finanzierungsprogramm</th>
<th>Projektwebsite</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFATS</td>
<td>Innovative Future Air Transportation System</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2007</td>
</tr>
<tr>
<td>Project Code</td>
<td>Project Title</td>
<td>RP Code</td>
<td>Website</td>
<td>Year</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>AVITRACK</td>
<td>Aircraft Surroundings, Categorised Vehicles & Individuals Tracking for Apron’s Activity Model Interpretation & Check</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2006</td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>Optimised Procedures and Techniques for Improvement of Approach and Landing</td>
<td>RP6</td>
<td>N/A</td>
<td>2004–2008</td>
</tr>
<tr>
<td></td>
<td>Project Title</td>
<td>Type</td>
<td>Website</td>
<td>Year</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---------------------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>